##plugins.themes.bootstrap3.article.main##

Rizqi Fitri Naryanto Naryanto
Mera Kartika Delimayanti

Abstract

World energy demand has resulted in a surge in renewable energy needs. One of them is biomass. The gasification process takes place in a reactor called a gasifier, and the most effective way is to implement the Fixed Bed method on the downdraft gasifier. The process was executed in a downdraft gasifier because of the gas-making process without stopping the ignition and producing a small amount of tar. The biomass raw material used in this study is wood pellets because of their abundant availability in Indonesia. This research discussed numerical simulations for downdraft gasifier by utilizing wood pellet biomass as a raw material. The simulation technique is computational fluid dynamic with the DPM (Discrete Phase Model) because it can predict the experiment result details more precisely. The simulation results have shown that the convergence rate got better with the longer process iteration time. The simulation results were close to 100% in real-scale laboratory research results.

##plugins.themes.bootstrap3.article.details##

How to Cite
Naryanto, R. F. N., & Delimayanti , M. K. (2021). Numerical Simulation of Downdraft Biomass Gasifier With Computational Fluid Dynamic. Jurnal Teknovasi, 8(01), 19–24. https://doi.org/10.55445/jt.v8i01.24
References
[1.] Cloete, S., & Amini, S. (2016). The dense discrete phase model for simulation of bubbling fluidized beds: Validation and verification. 7.
[2.] Fermi, Muhammad Iwan. (2014). Pemanfaatan Metode Computational Fluid Dynamics (CFD) Dalam Perancangan Kompor Biomassa. Jurnal Teknobiologi, V(1), 15–19.

[3.] Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42–52. https://doi.org/10.1016/j.fuel.2011.04.042
[4.] Hsi, C.-L., Wang, T.-Y., Tsai, C.-H., Chang, C.-Y., Liu, C.-H., Chang, Y.-C., & Kuo, J.-T. (2008).
a. Characteristics of an Air-Blown Fixed-Bed Downdraft Biomass Gasifier. Energy & Fuels, 22(6), 4196–4205. https://doi.org/10.1021/ef800026x
[5.] Naryanto, R. F., Enomoto, H., Hieda, N., Teraoka, Y., Chunti, C., & Noda, R. (2019). The Influence of Wood Pellet Feedstock Water Content on Tar Component in Biomass System Using Downdraft Gasifier. Journal of the Japan Institute of Energy, 98(5), 115–118. https://doi.org/10.3775/jie.98.115
[6.] Naryanto, R. F., Enomoto, H., Vo Cong, A., Fukadu, K., Zong, Z., Delimayanti, M. K., Chunti, C., & Noda, R. (2020). The Effect of Moisture Content on the Tar Characteristic of Wood Pellet Feedstock in a Downdraft Gasifier. Applied Sciences, 10(8), 2760. https://doi.org/10.3390/app10082760
[7.] Simanungkalit, S. P. (2013). SIMULASI NUMERIK PROSES GASIFIKASI LIMBAH TANDAN KOSONG KELAPA SAWIT. 11.
[8.] Subroto, S. (2017). KINERJA TUNGKU GASIFIKASI DOWNDRAFT CONTINUE BAHAN
a. BAKAR SEKAM PADI. Media Mesin: Majalah Teknik Mesin, 18(1). https://doi.org/10.23917/mesin.v18i1.3946
[9.] Telmo, C., & Lousada, J. (2011). Heating values of wood pellets from different species. Biomass and Bioenergy, 35(7), 2634–2639. https://doi.org/10.1016/j.biombioe.2011.02.043